Maximum element of a Tensor

Maximum element

```
x = tf.constant([[9, 2, 10,4],[5,6,7,8]])
print(tf.reduce_max(x))
tf.Tensor(10, shape=(), dtype=int32)
```

[$9,2,10,4]$
$[5,6,7,8]$

Index of the Maximum element

```
x = tf.constant([[9,2,10,4],[5,6,7,8]])
print(tf.math.argmax(x))
tf.Tensor([00 1 0 1], shape=(4,), dtype=int64)
```

```
x = tf.constant([[2, 20, 30, 3, 6], [3, 11, 16, 1, 8],
    [14, 45, 23, 5, 27]])
print(tf.math.argmax(x))
tf.Tensor([2 2 0 2 2], shape=(5,), dtype=int64)
```

$[2,20,30,3,6$]
$[3,11,16,1,8$]
[14, 45, 23, 5, 27]

Minimum element of a Tensor

Minimum element

```
x = tf.constant([[9,2,10,4],[5,6,7,8]])
print(tf.reduce_min(x))
```

tf.Tensor(2, shape=(), dtype=int32)

Index of the Minimum element

```
x = tf.constant([[9, 2,10,4],[5,6,7,8]])
print(tf.math.argmin(x))
tf.Tensor([[1 0 1 0], shape=(4,), dtype=int64)
```

$\mathrm{x}=\mathrm{tf} . \operatorname{constant}([[2,20,30,3,6],[3,11,16,1,8]$,
[14, 45, 23, 5, 27]])
print(x)
print(tf.math.argmin(x))
tf.Tensor(
$\left[\begin{array}{llllll}2 & 20 & 30 & 3 & 6\end{array}\right]$
[$\left.\begin{array}{lllll}3 & 11 & 16 & 1 & 8\end{array}\right]$
[14 4523 5 27]], shape=(3, 5), dtype=int32)
tf. Tensor([$\left.\begin{array}{lllll}0 & 1 & 1 & 1 & 0\end{array}\right]$, shape $=(5$,$) , dtype=int64)$

```
[ 9, 2, 10, 4]
[5,6,7 , 8]
```

[$9,2,10,4]$
$[5,6,7,8]$
$[2,20,30,3,6$]
$[3,11,16,1,8$]
[$14,45,23,5,27]$

Minimum/Maximum of Two Tensors

Minimum

```
x = tf.constant([0., 0., 0., 0.])
y = tf.constant([-5., -2., 0., 3.])
tf.math.minimum(x, y)
<tf.Tensor: shape=(4,), dtype=float32, numpy=array([-5., -2., 0., 0.], dtype=float32)>
```

Maximum

```
x = tf.constant([0., 0., 0., 0.])
y = tf.constant([-5., -2., 0., 3.])
tf.math.maximum(x, y)
```

<tf.Tensor: shape=(4,), dtype=float32, numpy=array([0., 0., 0., 3.], dtype=float32)>

Concatenation of Two Tensors

Along 0-Axis

```
x = [[1, 2, 3], [4, 5, 6]]
y=[[7, 8, 9], [10, 11, 12]]
tf.concat([x, y], 0)
<tf.Tensor: shape=(4, 3), dtype=int32, numpy=
array([[ 1, 2, 3],
    [4, 5, 6],
    [7, 8, 9],
    [10, 11, 12]])>
```

Along 1-Axis

```
x = [[1, 2, 3], [4, 5, 6]]
y = [[7, 8, 9], [10, 11, 12]]
tf.concat([x, y], 1)
<tf.Tensor: shape=(2, 6), dtype=int32, numpy=
array([[ 1, 2, 3, 7, 8, 9],
    4, 5, 6, 10, 11, 12]])>
```


Modifying the value of a Tensor

Not a simple operation.
Possible for Variable type. But, for such operation, we would prefer to use numpy library.

Matrix Multiplication

```
import tensorflow as tf
A1 = tf.constant([[1, 2, 3, 4]])
B1 = tf.constant([[3], [4], [5], [5]])
C1 = tf.multiply(A1, B1)
tf.print(C1)
[[[3
    [\begin{array}{llll}{4}&{8}&{12}&{16}\end{array}]
    [\begin{array}{llll}{5}&{10}&{15}&{20}\end{array}]
    [5 10 15 20]]
```

```
import tensorflow as tf
A1 = tf.constant([[1, 2, 3, 4]])
B1 = tf.constant([[3], [4], [5], [5]])
C1 = tf.matmul(A1, B1)
tf.print(C1)
```

[[46]]

